Theoretical Investigations of the Spin Hamiltonian Parameters and the Local Structure of a Trigonal Co²⁺ Center in Bi₄Ge₃O₁₂

Shao-Yi Wu^{a,b} and Hui-Ning Dong^{b,c}

- ^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
- b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, P.R. China
- ^c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China

Reprint requests to S.-Y. W.; E-mail: shaoyi_wu@163.com

Z. Naturforsch. **59a**, 563 – 567 (2004); received June 14, 2004

The spin Hamiltonian parameters anisotropic g factors g_{\parallel} , g_{\perp} and hyperfine structure constants A_{\parallel} and A_{\perp} , as well as the local structure of the trigonal $\mathrm{Co^{2+}}$ center in $\mathrm{Bi_4Ge_3O_{12}}$ (BGO) are theoretically investigated by the perturbation formulas of the spin Hamiltonian parameters for a $3d^7$ ion in trigonal symmetry, based on the cluster approach. It is found that the impurity $\mathrm{Co^{2+}}$ substituting the host $\mathrm{Bi^{3+}}$ undergoes an off-center displacement $\Delta Z (\approx -0.132 \, \mathrm{\mathring{A}})$ away from the center of the oxygen octahedron along the $\mathrm{C_3}$ axis. The spin Hamiltonian parameters based on the above displacement show reasonable agreement with the observed values. The results are discussed.

Key words: Electron Paramagnetic Resonance (EPR); Crystal-field Theory and Spin Hamiltonians; Defect Structure; Co²⁺; Bi₄Ge₃O₁₂ (BGO).